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Abstract. We propose an unsupervised video object segmentation algo-
rithm that detects recurring objects and learns cohort object proposals
over space-time. Our core contribution is a graph transduction process
that learns object proposals densely over space-time, exploiting both ap-
pearance models learned from rudimentary detections of sparse object-
like regions, and their intrinsic structures. Our approach exploits the fact
that rudimentary detections of recurring objects in video, despite ap-
pearance variation and sporadity of detection, collectively describe the
primary object. By learning a holistic model given a small set of object-
like regions, we propagate this prior knowledge of the recurring primary
object to the rest of the video to generate a diverse set of object proposals
in all frames, incorporating both spatial and temporal cues. This set of
rich descriptions underpins a robust object segmentation method against
the changes in appearance, shape and occlusion in natural videos.

1 Introduction

Video segmentation remains an open challenge for Computer Vision, with recent
advances relying upon prior knowledge supplied via interactive initialization or
correction [1–6]. Yet fully unsupervised video segmentation [7–11] remains useful
in Big Data scenarios such as video summarization or ingest pre-processing for
video indexing or recognition, where the human in the loop is impractical. This
is a very challenging task due to the lack of prior knowledge about object ap-
pearance, shape or position. Furthermore, variance in illumination and occlusion
relationships introduce ambiguities that in turn induce instability in boundaries
and the potential for localized under- or over-segmentation.

This paper proposes a novel automatic video object segmentation algorithm
in which the segmentation of each frame is driven by set of rich object models
learned from spatio-temporally dense and coherent object proposals. The core
novel contribution is our graph transduction approach to the efficient learning of
the dense video object proposals which enables the detection and segmentation of
objects in complex dynamic scenes without suffering from appearance variation
or object occlusion over time. In contrast to previous techniques, our algorithm
learns and extracts object proposals from scratch to account for the evolution of
object’s appearance, shape and location with time, as opposed to selecting from
existing per-frame detections of object-like regions [9–12].
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Fig. 1. Generation of dense video object proposals.

The key idea is to create feature-based rudimentary detections of regions for
the primary object by discriminative learning from labelled examples of sparse
object-like regions. These detections serve as informative indicators of the ap-
pearance and location of the object. We propagate this labeled data on an undi-
rected space-time graph consisting of regions, solving the graph transduction
learning efficiently with a fast convergence technique [13]. Inference at the re-
gion level further makes our dense video object proposal extraction approach
a practical solution for unsupervised object segmentation on natural video se-
quences.

2 Related Work

Video object segmentation methods requiring user to provide an initial annota-
tion of the first frame have been proposed, which either propagate the annotation
to drive the segmentation in successive frames [1–6] or perform spatio-temporal
grouping [14, 15]. The former group of methods heavily rely on motion estimates
and may fail in segmenting videos with complex motions or varying object ap-
pearance. Although stability is achieved in the latter methods, they usually
become computationally infeasible for pixel counts in even moderate size videos,
and often fail in dealing with fast moving objects.

Automatic or unsupervised methods have also been proposed as a conse-
quence of the prohibitive cost of user intervention in processing large amounts
of video data in most computer vision applications. Methods like [16–21] achieve
segmentation in a bottom-up approach based on spatio-temporal appearance and
motion constraints. Motion segmentation methods cluster pixels or superpixels
in video employing long-term motion trajectories analysis, which require the mo-
tion of the primary object to be neither too similar with the background nor too
fast. Methods which generate over-segmentations for later processing analog to
still-image superpixels [22] have also been proposed [23, 24], by applying spatio-
temporal clustering based on low level features. However, without any top-down
explicit notion of object, all of these automatic methods produce segmentations
without corresponding to any particular object with semantic meaning.
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Several recent methods [9–12] are proposed based on exploring recurring
object-like regions from still images by measuring generic object appearance
[25]. Lee et al. [9] proposed to extract ‘key-segments’ of the primary object by
performing clustering in a pool of object proposals from each frame of the video.
The weakness of this approach is that the object proposal pool combines re-
gions across all frames and discards the spatial and temporal information of
each region. Ma and Latecki [10] proposed to leverage the temporal information
by utilizing binary appearance relation between regions in different frames and
model the object region selection as a constrained Maximum Weight Cliques
problem. Zhang et al. [11] improved this approach by introducing optical flow to
track the evolution of object shape and appearance and solving the primary ob-
ject proposal selection problem as the longest path problem for Directed Acyclic
Graph (DAG). There are mainly two limitations with these later two approaches
[10, 11]. First, both approaches propose to select or merge per-frame extracted
object-like regions based on the objectness score which is computed locally in
each frame, regardless of the prior knowledge of the corresponding object learned
from other frames; their performance heavily relies on the quality of the initial
rudimentary detection of object-like regions which is highly unreliable in prac-
tice. The initial object proposals generated using [25] normally contain a large
amount of erroneous regions. Second, both approaches assume all object-like re-
gions within each frame are independent and do not explicitly consider spatial
affinity. This substantially limits the size of the object proposal especially when
the primary object is comprised of multiple regions with distinct appearances.
An additional limitation of [11] is that it employs optical flow warped region
overlap to merge object-like regions into a new region which may introduce fur-
ther spurious proposals due to inherent motion estimate error. Li et al. [12]
proposed to track a pool of figure-ground segments in each frame and incremen-
tally to learn a long-term object appearance model. However the incrementally
built appearance model heavily relies on greedy matching and also suffers from
the cumulative motion estimation error. All the above methods do not build an
explicit holistic appearance model but relies on local heuristics and motion for
selecting the object proposals.

To address the limitations of the above approaches [9–12], we propose to
learn a holistic appearance model from the rudimentary detection of object-like
regions across the whole video to drive the generation of dense object proposals.
We propagate the prior knowledge from rudimentary detections on an undirected
space-time graph consisting of regions by performing transduction learning, with
respect to both low level cues collectively revealed by the appearance model and
the intrinsic structure within video data. The transduction learning is guided by
the initially detected evidence by collectively learning the initial sparse object-
like regions, rather than directly using the local static ‘objectness’ score. Spatio-
temporally coherent and dense object proposals are generated to facilitate robust
object segmentation in challenging natural videos.

Our approach advances the state-of-the-art mainly in three aspects: (1) it
explores the holistic patterns of primary object which are collectively revealed
by a small set of object-like regions, and thus it prunes the spurious regions
due to the independent rudimentary detection from a particular frame without
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considering the object-like regions generated in adjacent frames (2) it employs
an efficient graph transduction learning approach to generating object proposals
evenly and consistently distributed spanning the whole video, by exploiting both
the local evidence and the intrinsic structure within video data (3) this set of
object proposals provides sufficient and diverse appearance, shape, and location
prior information to drive object segmentation while preserving spatio-temporal
coherence.

3 Video Object Proposals

Our approach to generating video object proposals is comprised of three main
steps: (1) object-like regions are extracted from each frame and a small set of
the most likely object regions associated with the primary object in the video
are identified (2) a holistic appearance model is learned from the object-like
regions to describe the primary object spanning the whole video (3) in a top-
down approach, transduction learning is performed on a space-time graph of
regions to efficiently generate object proposals in each frame integrating the
shared object models, temporal correlation and intrinsic structure within video
data.

3.1 Initial Detection of Object-Like Regions

Since we assume no prior knowledge on the size, shape, appearance or location of
the primary object, our algorithm operates by producing a diverse set of object
proposals in each frames using [25] which is a category independent method to
identify object-like regions in still image. To find the object-like regions among
the proposals, we compute the ‘objectness’ of each region r as

S(r) = A(r) +M(r)

where A(r) is the appearance score and M(r) is the motion score. The static
intra-frame appearance score A(r) is computed using [25]. Motion score M(r)
reflects the disparity of motions between primary object and background. We
compute optical flow [26] histograms for region r and r̄ which is formed by
merging all the closest surrounding regions of r. Using surrounding regions is
more informative than using pixels in a loosely fit bounding box around r in [9].
We compute M(r) as M(r) = 1− exp(−χ2

flow(r, r̄)), where χ2
flow(r, r̄) is the χ2

distance between L1-normalized optical flow histograms for regions r and r̄.

Following [9], we firstly form a candidate pool C by taking the top N (N = 10)
highest-scoring regions from each frame, and then identify groups of object-like
regions that may represent a foreground object by performing spectral clustering
in C. All clusters are ranked based on the average score S(r) of its comprising
regions. The clusters among the highest ranks correspond to the most object-like
regions but there may also be noisy regions, which is denoted as H.
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3.2 Holistic Appearance Model

Each object-like region from the rudimentary detection may correspond to differ-
ent part of the primary object from particular frames, whereas they collectively
describe the primary object. We could devise a discriminative model to learn
the appearance of those most likely object regions. The initial set of object-like
regions H form the set of all instances with a positive label (denoted as P),
while negative regions (N ) are randomly sampled outside the bounding box of
the positive example. We use this labeled training set to learn linear SVM clas-
sifier for two categories. The classifier provides a confidence of class membership
taking the features of a region which combines texture and color features, as in-
put. This classifier is then applied to all the unlabeled regions across the whole
video. After this classification process, each unlabelled region i is assigned with
a weight Yi from SVM, i.e. the signed distance to the decision boundary. All
weights are normalized between −1 and 1, by the sum of unsigned distances to
the decision boundary.

3.3 Graph Transduction Learning of Object Proposals

The holistic appearance model provides an informative yet independent and
incoherent prediction on each of the unlabelled regions regardless the inherent
structure revealed by both labeled and unlabeled regions. To generate robust
dense video object proposals, we adopt a graph transduction learning approach,
exploiting both the intrinsic structure within data and the initial local evidence
from the holistic appearance model.

Space-Time Graph of Regions To perform transduction learning, we define a
weighted space-time graph Gs = (V, E) spanning the whole video with each node
corresponding to a region, and each edge connecting two regions based on spatial
and temporal adjacencies. Temporal adjacency is coarsely determined based on
motion estimates. Each region rki in frame i is warped by the forward optical
flow to frame i+ 1 and the overlap ratio between the warped region rki and the

overlapped regions rji+1 in frame i+ 1 are computed as Soverlap(k, j) =
|r̃ki ∩r

j
i+1|

|r̃ki |
,

where r̃ki is the warped region of rki by optical flow to frame i + 1, and |r|
is the cardinality of region r. If Soverlap(k, j) is greater than 0.5 for a pair of

regions, i.e. rki and rji+1, in two successive frames, they are deemed temporally
adjacent. Note that accurate motion estimation is neither assumed nor required
to construct this graph.

We compute the affinity matrix W of the graph using the feature histogram

representation hri of each region ri as Wij = exp(−χ
2(hri

,hrj
)

2β ), where β is the

average χ2 distance between all adjacent regions. Since sparsity is important to
remove label noise and semi-supervised learning algorithms are more robust on
sparse graphs [27], we set all Wij are set to zero if ri and rj are not adjacent.
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Fig. 2. Positive predictions of each region and the brightness indicates probability of
being an object: (a) source image (b) independent SVM predictions (c) predictions
from graph transduction capturing the coherent intrinsic structure within visual data,
using SVM predictions as input.

Graph Transduction Learning Graph transduction learning propagates label
information from labeled nodes to unlabeled nodes. Let the node degree matrix

D = diag([d1, . . . , dN ]) be defined as Di =
∑N
j=1Wij , where N = |V|. We follow

a similar formulation with [13] to minimize an energy function E(F ) with respect
to all region labels F (F ∈ [−1, 1]):

E(F ) =

N∑
i,j=1

Wij |
Fi√
Di

− Fj√
Dj

|2 + µ

N∑
i=1

|Fi − Yi|2, (1)

where µ > 0 is the regularization parameter, and Y are the desirable labels of
nodes which are normally imposed by prior knowledge. The first term in (1) is
the smoothness constraint, which encourages the coherence of labelling among
adjacent nodes, whilst the second term is the fitting constraint which enforces
the labelling to be similar with the initial label assignment.

The optimization problem in (1) is solved by an iteration algorithm in [13].
Alternatively we solve it as a linear system of equations. Differentiating E(F )
with respect to F we have

∇E(F )|F=F∗ = F ∗ − SF ∗ + µ(F ∗ − Y ) = 0 (2)

where S = D−1/2WD−1/2. It can be transformed as

F ∗ − 1

1 + µ
SF ∗ − µ

1 + µ
Y = 0 (3)

Denoting γ = µ
1+µ , we have (I − (1− γ)S)F ∗ = γY . An optimal solution for F

can be solved using the Conjugate Gradient method with very fast convergence.
We use the predictions from SVM classifier to assign the values of Y . The

diffusion process can be performed for positive and negative labels separately,
with initial labels Y in (1) substituted as Y+ and Y− respectively:

Y+ =

{
Y if Y > 0

0 otherwise
(4)

and

Y− =

{
−Y if Y < 0

0 otherwise.
(5)

Combining the diffusion processes of both the object-like regions and back-
ground can produce more efficient and coherent labelling, taking advantage of
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Fig. 3. Exemplar video object proposals from CHEETAH sequence. Colors of contour
indicate different proposals. The transparency of each region indicates the objectness
(F ) from graph transduction learning. The objectness of each final object proposal is
computed by averaging the constituent region-wise objectness F weighted by area.

their complementary properties. We perform the optimization for two diffusion
processes simultaneously as follows:

F ∗ = γ(I − (1− γ)S)−1(Y+ − Y−). (6)

This enables a faster and stable optimization avoiding separate optimizations
while giving equivalent results to the individual positive and negative label diffu-
sion. Fig. 2 shows the positive predictions of each region, from SVM predictions
and graph transduction learning respectively. The prediction from SVM exhibits
unappealing incoherence, nonetheless, using it as initial input, graph transduc-
tion gives smooth predictions exploiting the inherent structure of data.

Finally, the regions which are assigned with label F > 0 from each frame are
grouped. Specifically, we use the final label F to indicate the level of objectness of
each region. The final proposals are generated by grouping the spatially adjacent
regions (F > 0), and assigned by an objectness value by averaging the constituent
region-wise objectness F weighted by area. The grouped regions with the highest
objectness per frame are added to the set of object proposals P. Exemplar video
object proposals are shown in Fig. 3.

4 Video Object Segmentation

We formulate video object segmentation as a pixel-labelling problem of assign-
ing each pixel with a binary value which represents background or foreground
(object) respectively. We define a space-time graph by connecting frames tem-
porally with optical flow displacement. In contrast to the previous space-time
graph during transduction learning, each of the nodes in this graph is a pixel
as opposed to a region, and edges are set to be the 4 spatial neighbors within
the same frame and the 2 temporal neighbors in adjacent frames. We define the
energy function that minimizes to achieve the optimal labeling:

E(x) =
∑
i∈V

ψi(xi) + λ
∑

i∈V,j∈Ni

ψi,j(xi, xj)

where Ni is the set of pixels adjacent to pixel i in the graph and λ is a parameter.
The pairwise term ψi,j(xi, xj) penalizes different labels assigned to adjacent

pixels:
ψi,j(xi, xj) = [xi 6= xj ]exp(−d(xi, xj))
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where [·] denotes the indicator function. The function d(xi, xj) computes the
color and edge distance between neighboring pixels:

d(xi, xj) = β(1 + |SE(xi)− SE(xj)|) · ||ci − cj ||2

where SE(xi) (SE(xi) ∈ [0, 1]) returns the edge probability provided by the
Structured Edge (SE) detector [28], ||ci− cj ||2 is the squared Euclidean distance
between two adjacent pixels in CIE Lab colorspace, and β = (2 < ||ci−cj ||2 >)−1

with < · > denoting the expectation.
The unary term ψi(xi) defines the cost of assigning label xi ∈ {0, 1} to pixel

i, which is defined based on the per-pixel probability map by combining color
distribution and region objectness:

ψi(xi) =

{
−log(w · Uc

i (xi) + (1− w) · Uo
i (xi)) if xi ∈ P

−logUc
i (xi) otherwise

(7)

where U ci (·) is the color likelihood and Uoi (·) is the objectness cue. The defini-
tions of these two terms are explained in detail next.

Color Likelihood

To model the appearance of the object and background, we estimate two Gaus-
sian Mixture Models (GMM) in CIE Lab colorspace. Pixels belonging to the set
of object proposals are used to train the GMM representing the primary ob-
ject, whilst randomly sampled pixels in the complement of object proposals are
adopted to train the GMM for the background. Given these GMM color models,
per-pixel probability U ci (·) is defined as the likelihood observing each pixel as
object or background respectively can be computed.

Objectness Cue

Extracted object proposals provide explicit information of how likely a region
belongs to the primary object (objectness) which can be directly used to drive
the final segmentation. Per-pixel likelihood Uoi (·) is set to be the objectness value
(F in (6)) of the region it belongs to.

Optimization

We adopt the binary graph cut [29] to minimize (7) and the resulting label
assignment gives the foreground object segmentation of the video.

5 Implementation Details

We start by computing feature descriptors for all the regions in video. Two types
of bag-of-features histograms are used: Texton Histograms (TH) and Color His-
tograms (CH). For TH, a filter bank with 18 bar and edge filters (6 orientations
and 3 scales for each), 1 Gaussian and 1 Laplacian-of-Gaussian filters, is used.
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400 textons are quantized via k-means. For CH, we use CIE Lab color space
with 20 bins per channel (60 bins in total). All histograms are concatenated to
form a single feature vector for each region. We learn 5 components per GMM
to model the color distribution.

We empirically set µ = 3.0 to balance the impact of the prior labelling and
the local labelling smoothness. For graph cut optimization, we set λ = 5 and
w = 0.35 by optimizing segmentation against ground truth over a training set
of 5 videos which proved to be a versatile setting for a wide variety of videos.
These parameters are fixed for the evaluation.

For efficiency and scalability, our region graph transduction learning is se-
quentially performed on clips of 20 frames by dividing the source video. The ef-
ficient transduction learning normally takes ∼ 18 seconds on a clip of 20 frames
with an unoptimized MATLAB implementation. The final graph cut based pixel
labelling is sequentially performed in each frame in turn, using a space-time
graph of three consecutive frames.

6 Experimental Results

We evaluate our method on two datasets: SegTrack [4] and a new dataset con-
sisting of five videos. Two videos (waterski, yunakim) of this new dataset are
from GaTech video segmentation dataset [19], two (jump, gymnastic) from the
challenging VOT2013 [30] dataset, and one (monkeybar) from video tooning [14].
The SegTrack dataset comes with pixel-level ground truth for the task of video
object segmentation. We manually labelled the ground-truth segmentation of
all the frames in the new dataset for evaluation. We measure the segmentation
performance as the average number of per-frame pixel error compared to the

ground-truth, which is defined as [4] error = XOR(S,GT)
NF , where S denotes the

label for every pixel in the video, GT is the ground-truth, and NF is the total
number of frames in the video.

6.1 SegTrack Dataset

There are totally six videos (birdfall, cheetah, girl, monekeydog, parachute, pen-
guin) in SegTrack dataset. We follow the setup in previous works [9–11, 21, 12]
and discard the penguin video, since only a single penguin is labelled in the
ground-truth amidst a group of penguins. Those videos exhibit a variety of
challenges, including objects of similar color to the background, fast motion,
non-rigid deformations, and fast camera motion.

Evaluation of Video Object Proposals To evaluate our method’s capability
to detect and generate spatio-temporal coherent and dense video object propos-
als, we firstly compare with [25], one of the state-of-the-art segment based object
proposal methods on still images, as the baseline. Table 1 compares the per-pixel
error rate of our object proposals, per-frame best scoring object proposal gener-
ated from [25], and also the lowest/highest error rates of all existing methods on
SegTrack dataset. We observe that [25] returns inconsistent and sporadic object
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Fig. 4. Primary object proposals generated by the proposed graph transduction learn-
ing method.

Table 1. Quantitative results on SegTrack. The proposed video object proposals are
compared with the per-frame top-scoring object proposal from [25], and also the low-
est/highest error rates of all existing video object segmentation methods.

Video (No. frames) Our Proposal [25] Lowest Error Highest Error
birdfall (30) 264 22167 151 454
cheetah (29) 869 20649 633 1217

girl (21) 1683 8176 1121 1785
monkeydog (71) 839 29058 284 3859
parachute (51) 450 82934 201 855

proposals independently in each frame, whilst our object proposal captures the
coherent essence of primary object, despite appearance variation and sporadity
of detection. The comparison against the existing lowest/highest error rates of
video object segmentation methods shows that the object regions generated by
efficient graph transduction learning alone can be regarded as coarse segmenta-
tion, even without the pixel-based object segmentation described in Sec. 4. The
qualitative evaluation of primary object proposals in Fig. 4 further confirms the
advantages of the proposed method in SegTrack dataset.

We also compare the object proposals generated from our graph transduction
learning with the ‘key-segments’ generated by Lee et al. [9]. Fig. 5 shows the per-
frame ground-truth overlap score of those generated object proposals from both
methods on SegTrack dataset. The results clearly demonstrate that our method
can generate object proposals which are not only temporally dense in each frame,
but also break the lower-bound posed by the accuracy of the region candidates
produced by [25] by learning a holistic appearance model (note that most of the
blue bars are taller than the corresponding red bars in Fig. 5).
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Fig. 5. Ground-truth overlap score of our object proposals and the ‘key-segments’ from
Lee et al. [9].

Fig. 6. Segmentation results on SegTrack dataset. The contour of segmented primary
object is shown in green.
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Table 2. Quantitative segmentation results on SegTrack. Segmentation error as mea-
sured by the average number of incorrect pixels per frame. Lower values are better.
The best result is shown in red and second best in blue

Video (No. frames) Ours [12] [21] [11] [10] [9] [4] [1]
birdfall (30) 151 188 217 155 189 288 252 454
cheetah (29) 672 983 890 633 806 905 1142 1217

girl (21) 1121 1573 3859 1488 1698 1785 1304 1755
monkeydog (71) 359 558 284 365 472 521 563 683
parachute (51) 204 339 855 220 221 201 235 502

Average 413 614 876 452 542 592 594 791
Supervision N N N N N N Y Y

Table 3. Quantitative segmentation results on Sports dataset

Video (No. frames) Ours Lee et al. [9] Zhang et al. [11]
gymnastic (100) 523 1595 1951

jump (105) 364 1261 3456
monkeybar (200) 833 1496 2108

waterski (48) 1582 2107 3084
yunakim (200) 319 907 4038

Evaluation of Video Object Segmentation We compare our video object
segmentation method with five state-of-the-art unsupervised methods [9–11, 21,
12] and two supervised methods [4, 1]. Following [11, 10], we also compute the
average number of incorrect pixels over all frames in the five videos as they
are roughly of the same frame size. Our method achieves the lowest average
number of per-frame pixel error along with superior performance on two out
of five videos compared with all 7 state-of-the-art methods with or without
supervision. It produces second best results on the rest three videos. Note that
our method consistently segments all the videos with low error rate which reflects
its robustness on various challenging situations. As a contrast, previous ‘object
proposal’ based methods are limited to the existing region candidates which
contain a large amount of label noise.

6.2 Sports Dataset

We have manually generated ground-truth for a new dataset collecting videos
from other datasets for video object segmentation. The dataset is challenging:
those videos are generally longer than SegTrack dataset; person’s varying poses
cause frequent self-occlusions and consequently appearance variations; some per-
sons move fast so causing blur whilst some are slow which is very hard to perform
motion segmentation. We find that the results on longer and complex videos can
better demonstrate the strength of our approach, especially in dealing with fast
appearance variation, cluttered scene and complex motions.

We firstly compare the proposed approach with Lee et al. [9] which is one of
the state-of-the-art ‘object proposal’ approach, both quantitatively and qualita-
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tively1. Table 3 shows the segmentation error on five videos of Sports dataset,
comparing our method with [9]. Our method substantially outperforms [9] with
low segmentation error across all videos. The qualitative comparison in Fig. 7
further confirms the advantages of the proposed method over [9]. In gymnastic
(first video), the appearance of the athlete varies quickly due to the fast motion
and pose variation. The sparse and noisy ‘key-segments’ generated by [9] can no
longer deal with this complex situation. As a contrast, our approach robustly
segments the athlete based on rich descriptions of the primary object regard-
less of the video length and appearance variation. Similar situations are also
present in monkeybar (third video), waterski (fourth video) and yunakim (fifth
video) where, in meanwhile, self-occlusion aggravates the failure of [9], due to the
lack of prior knowledge in the corresponding frames. The result on jump (second
video) demonstrates that our method can stably segment small object while pre-
serving temporal coherence (see the missegmentations in the background from
[9]).

We also quantitatively and qualitatively compare with Zhang et al. [11] on
Sports dataset2. The quantitative and qualitative comparisons are shown in Ta-
ble 3 and Fig. 7 respectively. Using local motion-warped overlapping to form new
object regions from the region candidates produced by [25], [11] tends to pro-
duce either under- or over-segmentations (e.g. the gymnastic, jump and yunakim
sequences) due to the spurious object regions and heavy reliance on accurate
motion estimation. Zhang et al. [11] further assume all object-like regions within
each frame are independent and do not explicitly consider spatial affinity, which
substantially limits the size of the object region especially when the primary
object is comprised of multiple regions with distinct appearances (e.g. the mon-
keybar sequence). Distinctively, our method learns a holistic appearance model
to diffuse the prior knowledge from the initial region candidates using graph
transduction learning and thus can cope with more complex scenes in natural
videos.

7 Conclusion

We have proposed a novel unsupervised video object segmentation method by
generating a diverse set of video object proposals in a bottom-up approach.
This set of rich descriptions underpin robust segmentations against the large
variations of appearance, shape and occlusion in natural videos. The generation
of dense video object proposals is cast as performing efficient graph transduction
learning based on a holistic appearance model to describe the object-like regions,
incorporating both spatial and temporal cues. The proposed approach exhibits
superior performance in comparison with the state of the art on the SegTrack
dataset and additional challenging data sets posing different challenges.

1 We used the publicly available source code from:
http://vision.cs.utexas.edu/projects/keysegments/code/

2 We used the publicly available source code from:
http://dromston.com/projects/video object segmentation.php
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Fig. 7. Segmentation results on Sports dataset. Row 1: Segmentation results by Lee et
al. [9]. Row 2: Segmentation results by Zhang et al. [11]. Row 3: Segmentation by the
proposed method.
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